The Inhibition of Spinal Astrocytic JAK2-STAT3 Pathway Activation Correlates with the Analgesic Effects of Triptolide in the Rat Neuropathic Pain Model

نویسندگان

  • Jun Tang
  • Zhi-Hong Li
  • Shun-Nan Ge
  • Wei Wang
  • Xiao-Peng Mei
  • Wen Wang
  • Ting Zhang
  • Li-Xian Xu
  • Jin-Lian Li
چکیده

Neuropathic pain (NP) is an intractable clinical problem without satisfactory treatments. However, certain natural products have been revealed as effective therapeutic agents for the management of pain states. In this study, we used the spinal nerve ligation (SNL) pain model to investigate the antinociceptive effect of triptolide (T10), a major active component of the traditional Chinese herb Tripterygium wilfordii Hook F. Intrathecal T10 inhibited the mechanical nociceptive response induced by SNL without interfering with motor performance. Additionally, the anti-nociceptive effect of T10 was associated with the inhibition of the activation of spinal astrocytes. Furthermore, intrathecal administration of T10 attenuated SNL-induced janus kinase (JAK) signal transducers and activators of transcription 3 (STAT3) signalling pathway activation and inhibited the upregulation of proinflammatory cytokines, such as interleukin-6, interleukin-1 beta, and tumour necrosis factor-α, in dorsal horn astrocytes. Moreover, NR2B-containing spinal N-methyl D-aspartate receptor (NMDAR) was subsequently inhibited. Above all, T10 can alleviate SNL-induced NP via inhibiting the neuroinflammation in the spinal dorsal horn. The anti-inflammation effect of T10 may be related with the suppression of spinal astrocytic JAK-STAT3 activation. Our results suggest that T10 may be a promising drug for the treatment of NP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synergistic effect of treatment with triptolide and MK-801 in the rat neuropathic pain model

Triptolide (T10), an active component of Tripterygium wilfordii Hook F, is reported to have potent anti-inflammatory and analgesic effects. Additionally, MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, can reduce glutamate toxicity and has a significant analgesic effect on chronic pain. In this study, we tested the possible synergistic analgesic ability by intrathecal adminis...

متن کامل

Analgesic effect of α-terpineol on neuropathic pain induced by chronic constriction injury in rat sciatic nerve: Involvement of spinal microglial cells and inflammatory cytokines

Objective(s): Neuropathic pain is a prevalent and debilitating neurological disorder. Ample evidence indicates that microglial cells and inflammatory cytokines are involved in the pathogenesis of neuropathic pain. Alpha-terpineol is a monoterpenoid alcohol with inhibitory effect on inflammatory cytokines. The main purpose of this study was to evaluate the effect of α-t...

متن کامل

Effect of glial inhibition in attenuation of neuropathic pain and improvement of morphine analgesic effect in a rat model of neuropathy

Introduction: Pharmacological blockage of glial activity has been proved useful for treatment of neuropathic pain by lowering proinflammatory cytokines. The present study is to confirm the effect of post-injury administration of pentoxifylline on chronic constriction injury (CCI)-induced neuropathic pain symptoms_ and improved the efficacy of morphine anti-nociception. Methods: Male Wistar ...

متن کامل

Ginkgetin induces apoptosis in 786-O cell line via suppression of JAK2-STAT3 pathway

Objective(s): Renal cell carcinoma (RCC) is insensitive to conventional chemotherapy. Ginkgetin effectively treats several carcinoma cells. However, little is known about effects of Ginkgetin on RCC. In the present study, using 786-O cells, we evaluate whether Ginkgetin exerts anticancer effects against RCC. Materials and Methods: 786-O cells suspended in the medium containing Ginkgetin were c...

متن کامل

Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012